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Fig. 2. Error introduced by Rochelle’s formula.

important to note that this error is always greater than 3 percent

fok 0.1 < R c 10. It is therefore advisable to add a correction

coefficient of 1.04 to [footnote 1, eq. (10)] as long as R lies

within the interval (O.1,10).

Although, theoretically [footnote 1, eq. (10)] is extremely

interesting, the error involved is approximately ten times greater

than that of Wheeler. Moreover, it appears that the comparison

of [footnote 1, eq. (10)] with Bromwich’s formulas (graphs A

and ,B of the article) is not very judicious, since the lWter formulas

are less accurate than Wheeler’s.

The numerical resdlts shown in Table I allow the precision

of diverse approximations made on the parallel conductor

transmission line to be measured.
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On ihe Accuracy of the Beam-Wave Tlieory of the Open

Resonator

A. L. CULLEN

In an interesting paper Erickson [1] has demonstrated how

perturbation theory can be used to improve the accuracy of the

beam-wave theory of the open resonator. Specifically, two
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defects of beam-wave theory are considered. The first is that the

equiphase surfaces of beam-wave theory are not spherical, the

second is that the wave function employed is only an approximate

solution to the wave equation.

There is, however, a third defect of an equally fundamental

natttre, namely, that the boundary condition u = O over the

whole surface of each mirror is not correct for spherical mirrors,

if, as is implied, u represents one of the Cartesian components,

say EX, of the transverse electric field. This point has already

been considered briefly by Cullen et al. [2]. The purpose of the

present letter is to demonstrate that this boundary condition

error is in fact of comparable importance to the other two

defects, at least for the fundamental mode p = 1 = O.

For this mode, the fractional frequency-shift correction arising

from the approximation made in the wave equation is given by

Erickson [1, eq. (28)].

g’= ~ ()~d tan”l 4! .
f 8ko

(1)

,,
This equation can be written

Af
—.

f $’an-’((a’=]“2(k)’ ‘2)
the approximate form being valid when (kowo)4 >> 27r(d/~).

Thus the error in the simple beam-wave formula for resonant

frequency arising from an approximate wave equation is of the

order (kowo)– 4. We shall now show that the error due to the use

of an incorrect boundary condition is of the same order.

The physical reason why EX # O on the mirror surface is clear;

the electric vector will be normal to the mirror at its surface,

and so there will in general be finite components of EX and EY

on the surface, though these will both vanish on the axis. Suppose

u and v represent two different representations of EX; both

satisfy the wave equation, u = O on S, but n = v, on S, S being

the surface of one of the mirrors. Then the fractional change in
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frequency arising from the nonvanishing of EX is

af f, (v. vu). (LS—.
f kU2 ~v U2 dV

(3)

where the’ surface integral is taken over one of the two mirrors

of a symmetrical open resonator, and df is the frequency that

mustbe added to the frequency of resonance given by sim”ple

beam-wave theory.

To calculate v, approximately, we identify u = EX and assume

EY = O for the fundamental TEMOOq mode. We then use the

divergence equation to estimate E=, neglecting the variation with

z of all but the factor exp ( —jkz) in the expression for E=. Thus

starting with

~2
u=_&=!?!

()

exp - —
w, W2

( r2
.exp–j kz-tan-laz+—az

w’ )

(4)

and using jkEz = aE.J3x, we lind

.()~+(l+jaz)exp -~E= = j—

(
2

.exp–j kz-tan-laz+~az
W2 )

or

()Ez=.i~exp –~
w’

(
~2

)

.exp–j kz–2tan-laz+—az . (5)
W2

To find standing-wave solutions corresponding to the resonator

problem, we can take the sum or difference of EX and EX*

and also of E= and E=*. For definiteness, consider the symmetrical

solution corresponding to half the sum; the following pair of

formulas is found in this way

~=&=!!!!?exp
w (-$)coskz-tan-’az+$az)

(4)

‘Z=$exp(-$)sin(kz-’tan-’az+$az)”“)
We next represent the spherical mirrors by a parabolic approx-

imation, thus

~2

z=z~— —
2R1

(6)

where RI is the radius of curvature of the nodal surface of u on

the z axis at z = Z1. (Note that this deviation from the spherical

shape can be allowed for by a separate perturbation calculation

in the manner indicated by Erickson.) Using the equation

kz, – tan-l azl=(q+ l)~=(2rn+l)~ (7)

in which we have used the fact that q must be even, q = 2m,

say, for the symmetrical modes we are considering, we eventually

iind for E2 on the surface of the mirror at + ZI the result
.

–ex+$)(-’)m(s)‘8)Ez~ = ‘x
kw, 2

In deriving (8), we have assumed that the variation of w, R, and

@ with z over the mirror surface is negligible; it can be shown that

the resulting fractional error in EZS is of the order 1/k2w12 and

so can be ignored to tirst order. To evaluate EX on the mirror

surface, (4) is of course “not sufficiently accurate. Instead, we can

use the result that Eta. =‘ O on the mirror surface to express

v~ = EXS in terms of E=,, thus
,!

R, = (-l)mv. = E=, ~

&(:)exp(-”5)

or

kl)exp(-:’)” ‘7)
*2r2 cos2 ~ W.

v. = (–1)
kw12R1

The calculation of grad u h cylindrical coordinates is readily

carried out from (4), and so we find

()(grad u). dS = –(–l)mk~ 1 + &
WI

s exp
()

- ~ r dr d~. (8)
W12

Using (4), (7), and (8), and ignoring terms of order l/k02w02

in comparison with unity, the integrals in (3) can be evaluated

to give

y= -*41-4)f“
(9)

where k. is an eigenvalue of a symmetric mode. Note that

RI = kw12/ad in Erickson’s notation. Comparison with (2)

shows that the error due to finite EX on the mirror surfaces is

of the same order as that due to the approximation made in the

wave equation.

As a check on (9), we may use the inequality 11.5, with 11.7, of

[2]. On putting r = w, in (7) to find the maximum value of v,;

i.e., ltkl~,, in the notation of [2], we fid

af ~ 16e-1

()

1-2
7 ko4w04 2R1

(10)

which verifies @) in order of magnitude.

It is important to note that (9) depends on the assumption that

EY may be neglected in using the divergence equ$tion; this, k

intuitively plausible, but (9) cannot be regarded as more than a

reasonable estimate of the error resulting from failure to satisfy

the boundary conditions.

It does seem, however, that an error of the order of l/k04w04

still remains after Erickson’s corrections have been applied.

Nevertheless, the agreement he obtains between theory and

experiment is so impressive that it seems likely that the additional

error is independent (or almost independgmt) of the radial mode

number, It would be interesting to extend the present calculaticms

to study this possibility.
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