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Fig. 2. Error introduced by Rochelle’s formula.

important to note that this error is always greater than 3 percent
for 0.1 < R < 10. It is therefore advisable to add a correction
coefficient of 1.04 to [footnote 1, eq. (10)] as long as R lies
within the interval (0.1,10).

Although, theoretically [fodtnote 1, eq. (10)] is extremely
interesting, the error involvéd is approximately ten times greater
than that of Wheeler. Moreover, it appears that the comparison
of [footnote 1, eq. (10)] with Bromwich’s formulas (graphs 4
and B of the article) is not very judicious, since the latter formulas
are less accurate than Wheeler’s.

The numerical resilts shown in Table I allow the precision
of diverse approximations made on the pdrallel conductor
transmission line to be measured.
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On the Accuracy of the Beam-Wave Theory of the Open
Resonator

A. L. CULLEN

In an interesting paper Erickson [1] has demonstrated how
perturbation theory can be used to improve the accuracy of the
beam-wave theory of the open resonmator. Specifically, two
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defects of beam-wave theory are considered. The first is that the
equiphase surfaces of beam-wave theory are not spherical, the
second is that the wave function employed is only an approximate
solution to the wave equation.

There is, however, a third defect of an equally fundamental
nature, namely, that the boundary condition # = 0 over the
whole surface of each mirror is not correct for spherical mirrors,
if, as is implied, u represents one of the Cartesian components,
say E,, of the transverse electric field. This point has already
been considered briefly by Cullen et al. [2]. The purpose of the
present letter is to demonstrate that this boundary condition
error is in fact of comparable importance to.the other two
defects, at least for the fundamental mode p = [ = 0.

For this mode, the fractional frequency-shift correction arising
from the approximation made in the wave equation is given by
Erickson [1, eq. (28)].

é_j.l. = i tan~ ! (fﬁ) . €))

f nd 8ko
1 4
( kowo) @

This equation can be written
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the approximate form being vadlid when (kowo)* > 2n(d/A).
Thus the error in the simple beam-wave formula for resonant
frequency arising from an approximate wave equation is of the
order (kowo)~*. We shall now show that the error due to the use
of an incorrect boundary condition is of the same order.

The physical reason why E, # 0 on the mirror surface is clear;
the electric vector will be normal to the mirror at its surface,
and so there will in general be finite components of E, and E,
on the surface, though these will both vanish on the axis. Suppose
# and v represent two different representations of E,; both
satisfy the wave equation, # = 0 on S, but » = p,on §, S being
the surface of one of the mirrors. Then the fractional change in
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frequency arising from the nonvanishing of E, is

o _ Is (s Vu) - dS (3)
f k2 [y u? dv :
where the surface integral is taken over one of the two mirrors
of a symmetrical open resonatoi', and &f is the frequency that
must be added to the frequency of resonance given by simple
beam-wave theory.

To calculate v, approximately, we identify # = E, and assume
E, = 0 for the fundamental TEMg,, mode. We then use the
divergence equation to estimate E,, neglecting the variation with
z of all but the factor exp (—jkz) in the expression for E,. Thus
starting with

2
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and using jkE, = JE,/[0x, we find
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To find standing-wave solutions corresponding to the resonator
problem, we can take the sum or difference of E, and E.*
and also of E, and E_*. For definiteness, consider the symmetrical
solution corresponding to half the sum; the following pair of
formulas is found in this way '

r2 2
u=Ex=ﬁ9exp(——r—2)cos(_kz—tan‘1a2+%az)
w w w
@
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We next represent the spherical mirrors by a parabolic approx-
imation, thus

r2

z=zl—-2—R1

(6)
where R is the radius of curvature of the nodal surface of # on
the z axis at z = z,. (Note that this deviation from the spherical
shape can be allowed for by a separate perturbation calculation
in the manner indicated by Erickson.) Using the equation ‘

kz, — tan~! az; = (q + 1)’_; = (m + 1)% )

in which we have used the fact that ¢ must be even, g = 2m,
say, for the symmetrical modes we are considering, we eventually
find for E, on the surface of the mirror at + 2z, the result

-
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In deriving (8), we have assumed that the variation of w, R, and
@ with z over the mirror surface is negligible; it can be shown that
the resulting fractional error in E;s is of the order 1/k*w;* and
so can be ignored to first order. To evaluate E, on the mirror
surface, (4) is of course not sufficiently accurate’, Instead, we can
use the result that E,,, = 0 on the mirror surface to express
vs = E,_in terms of E,, thus '

) 2 2
o= B2 = (- (ﬂ) exp (" ‘r‘z‘)
w

Rl kW12R1 Wiy 1

or

v, = (_1)'"2_'2_0_052_‘15 (_M_/’g) exp (—- ._”_2‘2) . )
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The calculation of grad # in cylindrical coofdinates is readily
carried out from (4), and so we find '

my W r?
(rad ) dS = — (=" 7° (1 + E?)
2
exp (—L;) rdr dg. (8)
. w
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Using (4), (7), and (8), and ignoring terms of order 1/ko*wy?
in comparison with unity, the integrals in (3) can be evaluated

to give
5_f - 2 1 - d
r ko4W04 2R,

where k, is an ecigenvalue of a symmetric mode. Note that
R, = kw,?/ad in Erickson’s notation. Comparison with (2)
shows that the error due to finite E, on the mirror surfaces is
of the same order as that due to the approximation made in the
wave equation. ‘

As a check on (9), we may use the inequality I1.5, with IL.7, of
[2]. On putting # = w, in (7) to find the maximum value of v,;
i.e., [O0u|max in the notation of [2], we find ’

of < 16e~1 (1 _ _d_ )
f kofwo* 2Ry
which verifies (9) in order of magnitude.

It is important to note that (9) depends on the assumption that
E, may be neglected in using the divergence equation; this is
intuitively plausible, but (9) cannot be regarded as more than a
reasonable estimate of the error resulting from failure to satisfy
the boundary conditions. :

It does seem, however, that an error of the order of 1/kg*wy*
still remains after Frickson’s corrections have been applied.
Nevertheless, the agreement he obtains between theory and
experiment is so impressive that it seems likely that the additional
error is independent (or almost independent) of the radial mode

number. It would be interesting to extend the present calculations
to study this possibility. ‘
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